 |
advertisement |
|
|
|
|
|
|
Instruments and Systems: Monitoring, Control, and Diagnostics Annotation << Back
Selection of a Neural Network
Architecture for Searching
of Pipe Internal Surface Defects |
O.I. ZAKHAROVA, O.L. KULYAS, A.S. LOSHKAREV,
P.A. NAZARENKO, K.A. NIKITIN
The object of the study is a computer vision system for objective quality control of the internal surface of cylindrical objects, including pipes for
the oil and gas industry. The purpose of the work is to study the capabilities of computer vision methods for identifying defects in various structures
of the internal surface of cylindrical objects when using a television system with ultra-wide viewing angles. Neural networks are used as a tool for
diagnosing the internal surfaces of cylindrical products, pipes, etc. The parameters of neural network architectures are the size and shape of the
convolution kernel, the number of convolutional blocks, the number of subsampling layers, and the number of layers of the output fully connected
network.
Keywords: computer vision, quality control, surface defect, pipe, television system, image reconstruction, neural network, convolutional network.
DOI: 10.25791/pribor.1.2024.1471
Pp. 51-56. |
|
|
|
Last news:
Выставки по автоматизации и электронике «ПТА-Урал 2018» и «Электроника-Урал 2018» состоятся в Екатеринбурге Открыта электронная регистрация на выставку Дефектоскопия / NDT St. Petersburg Открыта регистрация на 9-ю Международную научно-практическую конференцию «Строительство и ремонт скважин — 2018» ExpoElectronica и ElectronTechExpo 2018: рост площади экспозиции на 19% и новые формы контент-программы Тематика и состав экспозиции РЭП на выставке "ChipEXPO - 2018" |